COT 6405 Introduction to Theory of
Algorithms

Topic 6. Heapsort (cont’d)

9/14/2016

Heap operations: BuildHeap

 We can build a max-heap in a bottom-up
manner by running MAX-Heapify (x) as x
runs through all nodes
— for i & ndownto 1 do MAX-Heapify(i)

* Order of processing guarantees that the
children of node i are heaps when i is
processed

* A better upper bound?

BuildHeap

* For an array of length n, all elements in range
Alln/2] + 1...n] are heaps (Why?)

* Walk backwards through the array from |n/2|
to 1, calling MAX-Heapify() on each node.

Build-MAX-Heap()

// given an unsorted array A, make A a heap
Build-MAX-Heap (A)
{
A.heap size = A.length;
for (1 = LA.length/ZJ downto 1)
MAX-Heapify (A, 1);

Build-MAX-Heap() Example

e A={4,1,3,2,16,9, 10, 14, 8, 7} (10 elements)
* We started with i = A.length/2 =5

/ 4

\.
2 16 {

3

N

0

14 3 7/

Example (cont’d)

3

< N

14

i

16
7/

N

2

i=4, A={4,1,3,14,16,9,10,2,8, 7}

9/14/2016

Example (cont’d)

10

7

14

\
i b

16
7/

N

2

i=3, A={4,1,10,14,16,9,3,2,8, 7}

9/14/2016

Example (cont’d)

16 10

14 7/

\
i i b

/N

2 8 1

i=2, A={4,16,10,14,7,9,3,2, 8, 1}

9/14/2016

9/14/2016

14

Example (cont’d)

/

1

16

10

i

\3

i=1, A={16,14,10,8,7,9, 3,2, 4,1}

BUILD MAX_ HEAP correctness

Correctness

Loop invariant: At start of every iteration of for loop, each node 1 + 1,
1 +2,...,n1sroot of a max-heap.

Initialization:

we know that each node [n/2] + 1, [n/2] + 2,

..., i 18 a leaf, which is the root of a trivial max-heap. Since 1 = [n/2] before
the first tteration of the for loop, the mvariant is initially true,

Maintenance: Children of node
ant, they are both roots of max-

are all roots of max-heaps,
Decrementing 1 reestablishes t

are Indexed higher than 1, so by the loop invari-
heaps. Correctly assuming that14-1,742,...,n
AX-HEAPIFY makes node 1 a max-heap root.

1e loop invariant at each iteration.

Termination: When: = 0, the loop terminates. By the loop invariant, each node,

" notably node 1, is the root of a

max-heap.

Analyzing Build-MAX-Heap

* Each call to MAX-Heapify () takes O(lg n)
time

* There are O(n) such calls (specifically, Ln/ZJ)

* Thus the running time is O(n Ig n)

* A tighter bound of Build-MAX-Heap is O(n)

— How could this be possible?

9/14/2016 11

Analyzing Build-MAX-Heap (cont’d)

height #nodes cost
h h 20 h x 2°

h‘_/ \-1 h-1 2 (h=1) =21
" AN
2

h-2 h-2 h-2 h-2 22 (h—2)x2°

L0 0 2 0 x 2R

Analyzing Build-MAX-Heap (cont’d)

* Adding up the costs of each level together
+ T(n) = T x 2"7¥= 3 90 x olignl=x

height #nodes cost
h h 2° h=x20

h-1 21 (h—1) 21

oooooo

Analyzing Build-MAX-Heap (cont’d)

2llgn|

o T(n) Zlggsz lign|—x _ ZUQ”J —

lgnJ llgn] X
_Z nzx 0 Zx

< n2x=02—x =2n = 0(n)

{ x=05x _Zx Ox(_)x Zlio=0kyk=(1_yy)2=2J

9/14/2016 14

Heapsort

* Given Build-MAX-Heap (), anin-place sorting
algorithm is easily constructed:
— Maximum element is at A[1]
— Discard by swapping it with element at A[n]
* Decrement A.heap_size

* A[n] now contains correct value
— Restore heap property at A[1] by calling MAX -
Heapify ()
— Repeat, always swapping A[1] for A[A.heap_size]

Heapsort (cont’d)
Heapsort (A)
{
Build-MAX-Heap (A) ;
for (1 = A.length downto 2)
{
Swap (A[1], A[1]);
A.heap size= A.heap size - 1;
MAX-Heapify (A, 1);

Heapsort (cont’d)

e Can we call MAX-Heapify(A,1) instead of
Build-MAX-Heap(A) before the loop?

Heapsort (A)
{
Build-MAX-Heap (A) ;
for (i = A.length downto 2)
{
Swap (A[1], A[1]);
A.heap size= A.heap size - 1;
MAX-Heapify (A, 1);

Heapsort (cont’d)

* Can we call Build-MAX-Heap(A) instead of
MAX-Heapify(A,1) inside of the loop?

Heapsort (A)
{
Build-MAX-Heap (A) ;
for (i = A.length downto 2)
{
Swap (A[1], A[1]);
A.heap size= A.heap size - 1;
MAX-Heapify (A, 1);

Analyzing Heapsort

* The call to Build-MAX-Heap () takes O(n)
time

* Each of the (n—1) calls to MAX-Heapify ()
takes O(lg n) time

* Thus the total time taken by HeapSort ()
=0(n) + (n-1) O(lg n)

Exercise

 What are the minimum and maximum
number of elements in a heap of height h?

Exercise (cont’d)

* Aheap Is a semi-complete binary tree, so the
minimum number of elements in a heap of height h is
20 (= 20420+, +2"1 + 1)

* The maximum number of elements in a heap of
height h is 2"*1-1 (= 20+21+... +27)

S)

9/14/2016 21

9/14/2016

COT 6405 Introduction to Theory of
Algorithms

Topic /. Priority queues

22

Priority Queues

 The heap data structure is incredibly useful for
implementing (max-/min-) priority queues

— A data structure for maintaining a set S of
elements, each with an associated value or key

— Supports the operations Insert (),
Maximum (), and ExtractMax ()

24

Priority Queue Operations

Insert(S, x) inserts the element x into set S

Maximum(S) returns the element of S with
the maximum key

ExtractMax(S) removes and returns the
element of S with the maximum key

How could we implement these operations
using a heap?

Implementing Priority Queues

Heap-Maximum (A)

{
return A[l];

}

Implementing Priority Queues

Heap-Extract-Max (A)

{
if (A.heap size < 1) { error; }
max = A[l];
A[l] = A[A.heap size];
A.heap size = A.heap size - 1;
MAX-Heapify (A, 1);
return max;

Implementing Priority Queues
Heap-INCREASE-KEY (A, i, key)

if key < A[1] {error;}
A[i]= key;
while (i>1 and A[PARENT (i)]< A[1i])
exchange (A[i], A[PARENT(1)];
i= PARENT (1) ;
} what’s running time?

HEAP-INCREASE-KEY

PR

(b)

mm

Implementing Priority Queues

Max-Heap-Insert (A, key)

{
A.heap size = A.heap size + 1;
A[A.heap size]= -«;
Heap-INCREASE-KEY (A,A.heap size, key);

}

//what’s running time?

Building a heap by insertions

A heap could be built by successive insertions

How about the cost (the number of swaps)?

g1 + 1g2 + Ig3.....+lgn = Ign! = O(nlgn) (Stirling’s
approximation).

This is not the optimal way to construct a
heap

Build-MAX-Heap requires O(n) swaps

Common mistakes

* Not updating the heap when the key of a node
changes.

e After extracting the maximum node, not
building the heap again.

Exercise

* How to implement a stack by using a priority
gueue?

Exercise (cont’d)

class Stack

{
private int ¢ = 0;
private PriorityQueue pq;
public void Push(int x)

{

C++:

pg.Insert(x, c); }
public int Pop()
{

C--;

return pg.Remove(); }

About midterm

 Midterm | will cover everything we have
learned so far
— From Intro lecture to Lecture 7 (inclusive)

— Function growth rate analysis, divide and conquer,
recurrence, recursion tree and the Master
Theorem, heaps, basic heap operations, priority
queues.

— 3:30pm to 4:45pm Sep 28th
— Please be familiar with the basic concepts
— No class on Sep 19th

